Hearts for commutative Noetherian rings: torsion pairs and derived equivalences
نویسندگان
چکیده
Over a commutative noetherian ring $R$, the prime spectrum controls, via assignment of support, structure both $\mathsf{Mod}(R)$ and $\mathsf{D}(R)$. We show that, just like in $\mathsf{Mod}(R)$, support classifies hereditary torsion pairs heart any nondegenerate compactly generated $t$-structure Moreover, we investigate whether these $t$-structures induce derived equivalences, obtaining new source Grothendieck categories which are equivalent to $\mathsf{Mod}(R)$.
منابع مشابه
NONNIL-NOETHERIAN MODULES OVER COMMUTATIVE RINGS
In this paper we introduce a new class of modules which is closely related to the class of Noetherian modules. Let $R$ be a commutative ring with identity and let $M$ be an $R$-module such that $Nil(M)$ is a divided prime submodule of $M$. $M$ is called a Nonnil-Noetherian $R$-module if every nonnil submodule of $M$ is finitely generated. We prove that many of the properties of Noetherian modul...
متن کاملSuperdecomposable pure injective modules over commutative Noetherian rings
We investigate width and Krull–Gabriel dimension over commutative Noetherian rings which are “tame” according to the Klingler–Levy analysis in [4], [5] and [6], in particular over Dedekind-like rings and their homomorphic images. We show that both are undefined in most cases.
متن کاملDerived Equivalences for Triangular Matrix Rings
We generalize derived equivalences for triangular matrix rings induced by a certain type of classical tilting module introduced by Auslander, Platzeck and Reiten to generalize reflection functors in the representation theory of quivers due to Bernstein, Gelfand and Ponomarev.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Documenta Mathematica
سال: 2021
ISSN: ['1431-0635', '1431-0643']
DOI: https://doi.org/10.4171/dm/831